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Abstract

We consider a communication network shared by several selfish users. Each user
seeks to optimize its own performance by controlling the routing of its given flow de-
mand, giving rise to a non-cooperative game. We investigate the Nash equilibrium of
such systems. For a two-node multiple-links system, uniqueness of the Nash equilibrium
is proved under reasonable convexity conditions. It is shown that this Nash equilibrium
point possesses interesting monotonicity properties. For general networks, these con-
vexity conditions are not sufficient for guaranteeing uniqueness, and a counter example
is presented. Nonetheless, uniqueness of the Nash equilibrium for general topologies is

established under various assumptions.
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1 Introduction

Traditional computer networks were designed with a single administrative domain in mind.
That is, the network is designed and operated as a single entity with a single control
objective. A single control objective does not mean that control is centralized but it means
that users are essentially passive and would quite often reduce their own performance for
the good of the entire network. For example, many advanced network routing protocols

attempt to optimize average network delay.

In modern networking, a single administration is no longer a valid assumption. In-
ternetworking, for example [1, 2], is a coalition of networks each belonging to a different
administration sharing gateways and sometimes internal network resources. Another ex-
ample is a set of different companies in the same neighborhood using wireless local area
networks and sharing the same portion of the spectrum. It is evident therefore that single

control objectives cannot provide solutions in more modern environments.

An alternative approach is to view the network as a resource shared by a group of
active users. Users may have completely different measures of performance and satisfaction
and completely different demands which at times may be contradictory. One possible way
of managing such a network is to let the individual users compete with one another in a
way that allows each of them to reach its (subjective) optimal working state. In such an
environment users change their behavior based on the state of the network. The change in
behavior of one user is likely to cause changes in other users’ behavior resulting in a dynamic
system. Several questions need be asked in this context such as whether there exists an
equilibrium point of operation such that no user would find it beneficial to change its
working parameters (i.e., a Nash equilibrium), whether such an equilibrium point is unique,
and whether the dynamic system actually converges to the equilibrium point. These are

fundamental questions in game theory [3, 4].

Existing networks have avoided dealing with the above mentioned issues. The Internet[5,
6], for example, uses a routing protocol that is based on topological considerations alone
without regard to other optimization criteria. Recently, policy-based routing has been
deliberated[7], but this approach does not accommodate general dynamics or individual
user characteristics. This paper addresses the most basic networking problem—the routing
problem— from a game theoretical standpoint, contributing to the understanding of the

dynamics of modern networks.

Most previous work in applying game-theory and economic techniques to computer net-
works deals with flow control, whereas routing is assumed to be given or centrally managed.
Kurose et al. [8] and Ferguson et al. [9] use economic pricing tools in order to deal with
network resource-allocation problems. More related to the present paper are the works of
Bovopoulos and Lazar[10] and Hsiao and Lazar[11], where the Nash equilibrium is exam-

ined in the context of multi-controller network flow control problems. In particular, in [10]
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uniqueness of the Nash equilibrium is established for a BCMP-type queuing network, under
a power-based criterion. A thorough study of competitive multi-class flow control to a single
node (server) may be found in [12], [13] and the references cited therein. Yet another flow
control analysis is given by Shenker[14] who considers an internetwork gateway problem.
The approach there is to assume that users operate selfishly and it is the task of the designer
to set the gateway parameters such that overall network resources are used as efficiently as
possible. In another paper Shenker [15] discusses at some length game theoretical issues

related to networking problems.

The routing standpoint has been scarcely considered in the literature. Lee and Cohen[16]
consider a set of parallel M/M/c queues (which, in our context, could represent parallel links
connecting two nodes). The users control the amount of flow through each queue (making
this a routing problem) and consider a linear combination of the average queue length and
customer delay as performance criteria. They show that in such a setting at most one Nash
equilibrium exists with the property that each user ships positive flow through each queue.
This result is employed in order to establish the uniqueness of the Nash equilibrium for the
case of identical queues. They fall short, however, of establishing uniqueness in the general
case. Indeed, for non-identical queues (or communications links) there do exist in general
equilibrium points where some users find it optimal to use only a subset of all available
links (a simple example is given in Section 2.3). This uniqueness problem is completely
resolved in the present work. Another game theoretic treatment of a routing problem was
considered in [17], where existence and uniqueness of the Nash equilibrium was shown for
the special case of two exponential servers working in parallel, and two users, each employing
a different cost function (namely, average delay and blocking probability). Noncooperative
games in the context of routing were studied also in the area of transportation networks.
A fundamental result due to Dafermos and Sparrow [18] shows that the game problem can
be solved via a standard network optimization problem, by a simple transform of the cost
function. Nonetheless, the "user” considered in the context of transportation networks is
one that controls just an infinitesimally small portion of the network flow (e.g., a car on the

road), whereas we are concerned with users that control non-negligible portions of flow.

In general, uniqueness (or even existence) of the Nash equilibrium is not guaranteed.
A result due to Rosen[19] defines conditions for existence, uniqueness, and stability of
Nash equilibria in convex games. This result is the basis of several subsequent works, such
as that of Bovopoulos and Lazar[10]. Unfortunately, the specific requirements of Rosen’s
uniqueness result (diagonal strict convexity) are not generally satisfied in the problem posed
in this paper (see Section 3.2). Another result is that of Li and Basar[20] who describe
a distributed (uncoordinated) environment in which the users play the game. They use
contraction conditions to guarantee uniqueness and stability, but these conditions are too

complicated to be verified in the problem we are interested in.

The work presented here deals with routing, meaning that the network topology is
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known, each user knows its individual throughput demands, each user can measure the
load on the network links, and routing is selected by each user so as to optimize a certain
selfish criterion such as its own average delay. This paper addresses mainly the uniqueness
problem, and also investigates properties of the flow traflic at the Nash equilibrium point.
Also, the stability issue (i.e., convergence to the Nash equilibrium point) is addressed briefly.
We note that the routing problem in a network with a single common (convex) objective
can be solved in a fairly standard way using convex programming techniques. Centralized
and distributed algorithms of that type have been described in the literature (e.g., [21, 22]).
When the objective function is convex but not common to all users the setting becomes
that of a convex game. As mentioned above and shown in the sequel, uniqueness of the
Nash point cannot be derived directly from available results of convex game theory (such
as [19]). This leads us to exploit the specific structure of our problem in order to prove

uniqueness.

We analyze the routing problem in two phases. First we consider a case of two nodes
connected by a set of parallel links, similar to the setting considered by Lee and Cohen[16],
except that ours allows more general functions and not just those resulting from a queuing
framework. This model is presented in Section 2. Existence and uniqueness of the Nash
equilibrium is established under fairly weak convexity properties, which are satisfied by
standard network cost functions. We also derive characteristics of the equilibrium. In
Section 3 we extend the discussion to a general network. We show through an example that
the above weak convexity conditions are not enough in order to guarantee the uniqueness
of the Nash equilibrium. Nonetheless, we prove uniqueness of the Nash equilibrium in
several cases. First, sufficient conditions for uniqueness are derived based on [19], and their
applicability is discussed. A second result establishes uniqueness for the case of symmetric
users. Finally, we obtain a result similar to that of [16], but for the general network

environment. Several conclusions and open problems are discussed in Section 4.

2 A Network of Parallel Links

2.1 Model and Problem Formulation

We are given a set 7 = {1,2,...,1} of users, which share a set of parallel communication
links £ = {1,2,..., L} interconnecting a common source node to a common destination
node. We agsume that users are selfish and do not cooperate in managing the communication
links. Fach user ¢ € Z has a throughput demand, which is some ergodic process with average
rate of r'. Without loss of generality, we assume that 7' < 72 < ... < r{. A user ships
its demand by splitting it through the communication links £. A user is able to decide
(at any time) how its demand is split among the links, i.e., user ¢ decides what fraction

of r* should be sent through each link. We denote by ff the expected flow of user ¢ € 7
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on link [ € £. Thus, user ¢ can fix any value for ff, as long as ff > 0 (nonnegativity
constraint) and ;o ff = r' (demand constraint). Turning our attention to a link [ € £,
let f; be the total flow on that link i.e., f; = > .c7 ff, also, denote by f] the vector of all
user flows on link [ € £, i.e., i = (f}, 7, .. .,flI). The flow configuration 1 of user i is the
vector fi = (f{,f%, .. ,fi) The system flow configuration f is the vector of all user flow
configurations, f = (fl,fz, .. .,fI). We say that a user flow configuration is feasible if its
components obey the nonnegativity and demand constraints and we denote by F! the set
of all feasible f1’s. Similarly, a system configuration is feasible if it is composed of feasible

user flow configurations and we denote by F the set of all feasible f’s.

The performance measure of a user i € 7 is given by a cost function J*(f). The aim of
each user is to minimize its cost. Since the cost functions depend on the flow configuration
of all users, it turns out that the optimal decision of each user depends on the decisions made
by other users, and since users are selfish, we are faced with a noncooperative game[3, 4].
Thus, we are interested in the Nash solution of the game. In other words, we seek a
system flow configuration such that no user finds it beneficial to change its flow on any link.
Formally, a feasible system flow configuration f = (%1,%2, .. .,%I) is a Nash Equilibrium
Point (NEP) if, for all « € Z, the following condition holds:

Ji®) = Jd, LR AT = i JE, P A T ()
flcF1

We remark that the NEP concept is of special importance from a dynamic standpoint:
in a practical scenario, a user changes its flow repeatedly, in response to the varying load
conditions. The stability points of such systems are exactly those in which no user finds it
beneficial to change its flow, i.e., the NEPs. An interesting question is whether the system

indeed converges to an NEP.

The following general assumptions on the cost function J' of each user are imposed
throughout the paper (some additional structural assumptions will be considered in the

sequel):

G1 J'is the sum of link cost functions i.e., J'(f) = 3" Ji(fi). Bach .J; satisfies:
G2 Jj :]0,00)! — [0, 00], a continuous function.

G3 Jf is convex in ff

aJ;

G4 Wherever finite, Jf is continuously differentiable in ff . We denote: K; = 35
!

Note the inclusion of +o0o in the range of Jf, which is useful to incorporate implicitly
and compactly additional constraints such as link capacities (as in the type-C functions
below). We emphasize that only “gradual” constraints, where the cost function increases

continuously to infinity, may be incorporated; the addition of other (“abrupt”) constraints
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would involve modification of the Kuhn-Tucker conditions below, and is not included in our

analysis.

An additional assumption concerning the entire model data is:

GH For every system flow configuration f, if not all costs are finite then at least one user
with infinite cost (J*(f) = o) can change its own flow configuration to make its cost
finite.

The last assumption immediately implies that in any NEP the costs of all users must be
finite. This assumption can be simply re-stated (in the present two-node network) in the
typical case where cost functions take infinite values only due to link capacity constraints
(i.e., the cost for a user is infinite if and only if it uses a link on which the total flow exceeds
the link’s capacity). Assumption G5 is then equivalent to the sum of link capacities being

greater than the sum of the users’ demands.

Under the above assumptions, the routing game is equivalent to a convex game in the
sense of [19], and thus the existence of an NEP is guaranteed (Theorem 1 in [19]). Since
some semantic differences do exist, we briefly outline the proof. Consider the point-to-set
mapping f € F — T'(f) C F, defined by

I(f)={fcF:F carg min J(£L,....gl,....11)}.
glcFi

Then I' is an upper semicontinuous mapping (by the continuity assumption G2) which maps
each point of the convex compact set F into a closed (by G2) convex (by G3) subset of F.
Then by the Kakutani fixed point theorem there exists a fixed point £ € I'(f), and such a

point is easily seen to be a Nash equilibrium.

It also follows from our assumptions that the minimization in (1) is equivalent to the
following Kuhn-Tucker conditions: for every i € 7 there exist a (Lagrange multiplier) \!

such that, for every link [ € £,
Ji>0— Ki(fy) =X (2)
fi=0— Ki(f)> X (3)

In other words, the Kuhn-Tucker conditions as stated above constitute necessary and suffi-

cient conditions for a feasible system flow configuration to be an NEP.

Given the existence of an NEP, we investigate its uniqueness as well as other interesting

properties. We also discuss a simple dynamic system and prove its convergence.

We shall mainly consider cost functions that comply with the following assumptions:

Al Jf is a function of two arguments, namely user ¢’s flow on link [ and the total flow on

that link. In other words: Ji(f) = Ji(f}, fi)-
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A2 J} is increasing in each of its two arguments.

A3 Note that K; = I(;(ff,fl) is now a function of two arguments. We assume that,

wherever Jf is finite, K;(ff, f1) is strictly increasing in each of its two arguments.

Functions that comply with the above assumptions shall be referred to as type-A functions.
We point out that the above assumptions encompass a large family of interesting cost
functions, some of which are described in the sequel. In particular, we note that the first
assumption relates the performance of a user on a link to both its amount of flow on that
link, which measures its “investment” on that link, and to the total amount of flow through
the link, which determines the link performance. In order to facilitate the presentation, and

by an (harmless) abuse of notation, whenever referring to cost functions of type-A we shall

denote them as J;(ff, f1) (instead of Ji(f}, f1)).

Typically, the performance of a link [ is manifested through some function 7;( f;), which
measures the cost per unit of flow on the link, and depends on the link’s total flow. Thus,

it is of interest to consider cost functions of the following form (see also [11, 16]):

BL Ji(ff. fo) = fi - Tifo)-
B2 T;: [0,00) — (Ovoo]‘
B3 Ti(f1) is positive, strictly increasing and convex.

B4 Ti(f1) is continuously differentiable.

Functions that comply with the above assumptions shall be referred to as type-B functions.
Note that a type-B function is a special case of type-A. Note also that if 7;( f;) is the average
delay per unit of flow, then the corresponding type-B function is the widely used average

delay function (in our case, per user). We note that for type-B functions we have
Ki=f-T/+T,

aT
dfy

A special kind of type-B cost functions is that which corresponds to an M/M/1 link

where T} =

model. In other words, suppose that:

Cl Ji(fi, fi) = fi - Ti(f) is a type-B cost function.

L g<c
2 Ty =4 Gi—h Jr< G , where (0 is the capacity of link [.
oo fi 2 ()

Functions that comply with the above assumptions shall be referred to as type-C func-
tions. Such delay functions are broadly used in modeling the behavior of links in computer

communication networks [23, 24].
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2.2 Uniqueness of the Nash Equilibrium
The following result establishes the uniqueness of the NEP for the parallel lines network.

Theorem 2.1 In a network of parallel links where the cost function of each user is of
type-A the NEP T is unique.

Proof: Let f € F and f € F be two NEPs. As observed above, f and fsatisfy the

Kuhn-Tucker conditions (2-3), which may be written as
Ki(fi )2 N5 Ki(i ) = Al fi >0 Vil (4)
KiK' 2 Ny K By =Nt i >0 vil, (5)
These relations, and the fact that K;(-, -) is increasing in each of its arguments, will now be
employed to establish that f = f, i.e. ff = f/ for every [, 1.
The first step is to establish that f; = fl for each line [. To this end, we prove that for
each [ and ¢, the following relations hold:
(AN <N fr > fi) implies that f;' < fj | (6)
(M= X, J < /i) implies that ;' > fi. (7)

We shall only prove (6), since (7) is symmetric. Assume that /A\Z < A and f; > f; for some
[ and i. Note that (6) holds trivially if f;' = 0. Otherwise, if f;" > 0, then (4)-(5) together

with our assumption imply that
]‘7;(.]2‘127.]2‘1) = XZ S AZ S ]‘rlz(fllvfl) S ]{lz(fllv.]}l) ) (8)

where the last inequality follows from the monotonicity of K; in its second argument. Now,
since K; is non-decreasing in its first argument, this implies that f/ < ff, and (6) is

established.

Let £y = {l : fi > fi}. Also denote Z, = {i : /A\Z SN, Lo=L—-Ly=1l: fi<fi})
Assume that £; is not empty. Recalling that >, f/ =3 ff = 7', it follows by (7) that for
every ¢ in 7,, ' '

S H=r =Y <=3 5= 0 i€l (9)
el leLy leLs €Ly
Noting that (6) implies that fli < fiforl € £y and i € T,, it follows that
S h= 2R Y =35 (10)
lely leLy i€l leLy i€l lely

This inequality obviously contradicts our definition of £y, which implies that £ is an empty
set. By symmetry it may also be concluded that the set {I : fl < fi} is empty. Thus, it
has been established that

fi=f; forevery l€L. (11)
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We now proceed to show that A = M for each user i. To this end, note that (6) may
be strengthened as follows:
{;\Z <N, fi = fi} implies that either fli < ffor fli =f=0. (12)
Indeed, if fli = 0 then the implication is trivial. Otherwise, if fli > 0, it follow similarly to
(8) that K;(f/,fl) < K;(ff,fl), so that fi’ < fi as required.

Assume now that A* < A for some ¢ € Z. Since dler fli = 7' > 0, then fli > 0 for at
least one link /, and (12) implies that
Zle > Zle = Tiv
lel lel

which contradicts the demand constraint for user ;. We therefore conclude that A’ < A’
does not hold for any user ¢. A symmetric argument may be used to show that PUBSBY
cannot hold as well. Thus, A= A for every 1 € Z. Combined with (11), this implies by
(6)-(7) that = i for every [, i, and uniqueness of the NEP is thus proved. O

2.3 Properties of the Nash Equilibrium

In this subsection we derive several properties of the (unique) NEP for type-A cost functions
that are identical for all users, i.e., all users use the same function: forall i € 7 and [ € £
JHfE f) = Ji(fi, fi) (to which correspond Ki(f}, f1)). Note that type-B functions belong to
this class. It should be observed that, even though users use the same cost functions, they
still have different objectives since they use different arguments (i.e., ff) in these functions.

All references to flow values are to those at the NEP.

Lemma 2.1 Suppose that f; > fl] holds for some link | and users i and j. Then ff > fl]
for alll € L ; moreover, the last inequality is strict if f > 0.

Proof: Since cost functions are identical then so are their derivatives, namely K;(-, =
K](-,-). Recall that the latter are strictly increasing in their first argument, by our definition

of class-A functions.

Choose an arbitrary link [. The claim holds trivially for fl] = 0. Assume, then, that
fi > 0. From the Kuhn-Tucker conditions we have that

K{(f], f) < KX 1)
Also, since f; > fl] implies f; > 0, we have
i, ) < KU )
Thus, we have
K{(f ) < KU ) = KiGRL ) < KIS 1) < KO ) = KGR )
ie., Klj(flj,fl) < I(;(ff,fl) which implies fl] < fi. |
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Theorem 2.2 Consider a network of parallel links with identical type-A cost functions.
For any pair of users i and j, r' > ri implies that fi > fi for alll € L. Moreover, if
rt > 1 then equality holds only for ff =fl=0.

Proof: Assume 7' > /. If #* > 1/ then there must be at least one line [ for which f; > fl],
and the required conclusions follow directly from the last lemma. Consider now the case
7 =7/ and assume by contradiction that f; < fl] for some [. Then, by the last lemma we
have f} < fi on all other lines, which upon summation yields r* < 77, contradicting r' = 7.
O

The above theorem shows that, for identical type-A cost functions, there is a mono-
tonicity among users in their use of links: a user with a higher demand uses more of each

and every link. We conclude that
Corollary 2.1 For users i and j such that v* = 7, holds ff = fl] foralll € L. a

In particular, if all users have the same demand i.e., r* = r for all i € Z, then, for all

[ € £ and for all i € 7 we have f = fi/I.

Consider two users, say ¢ and j, such that 7* > 77 (i.e., i > j). Suppose that at the NEP
user ¢ refrains from using link [. It follows from Theorem 2.2 that so does user j i.e., ff =0
implies fl] = 0. Thus, at equilibrium we can partition the set of links into a sequence of
sets L1,Ls,..., L5, such that £, C L for 1 < n < 1[I and £, is the set of links that is used
exclusively by users n,n+1,...,I. We have that £, D £,41; also, since each user, including
the one with the smallest demand, should use some link, we have that £y # ( (other sets

may be empty).

We observe a nice monotonic partition of users among links: a user with a higher demand
uses more links, and uses more of each link. There is another monotonic property that can
be derived, regarding the order of preference of links as seen by each user: suppose that a
user , say 1, prefers link [ over link i, i.e., ff > f;, does this relation between links [ and [
hold for all usersI’ The following lemma shows that this property holds for some types of
Type-B cost functions.

Lemma 2.2 Assume that for links, [ €L the following condition holds:
Ti(fr) > T ;) & T/(f) > T(fp)

Then, f; > fi implies fl] > fl] forall j € Z and of fl] > 0 then fl] > fl]
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Proof: Assume f; > ff Since the claims hold trivially for fl] = 0, we may further assume

that fl] > 0. By our first assumption f; > 0, so that the Kuhn-Tucker conditions imply

Ty f) + f1- T < Tl + f-TI0R)
Since f; > fi, it follows that either T f;) < Ty(fi) or Tl/(fl) < T/(fi)- f; > fi, we have
that either Ty( f;) < Ti(fi) or T/(f;) < T/(fi). However, the assumption made in the lemma
implies that both of the last two inequalities hold (since each implies the other). Now, since

fl] > 0, we similarly have

T+ F T = T + f - T
Since it has just been established that Ti(fp) <Ti(fr) and TI(f;) < T{(fi), we conclude that
> O
We note that the type-C function complies with the condition of the last lemma. Thus,

we have:

Theorem 2.3 In a network of parallel links where the cost function of each user is of
type-C, C; > Cp implies f; > fi for alli € T and if f{ > 0 then f; > fi.

Proof: The claim holds trivially for ff = 0. Assume, then, that ff > 0. From the

Kuhn-Tucker conditions we have that

T fo) + fi - T{(R) < T fi) + 11 THCf) (13)
By contradiction, assume that f; < ff Since the type-C function complies with the condi-
tion of Lemma 2.2, it follows that fl] < fl] for all j € Z, and thus f; < f;. Since C; > (7,
and since Ty(fr) = ﬁ for I’ € {1,1}, we have that Ti(f;) < Ti(fi) and T7(f;) < T/(fi)-

Since, by assumption, f; < ff, we have a contradiction to inequality (13). a

The last theorem, together with Theorem 2.2, show that with type-C cost functions we
get a partition of users among links at NEP: starting with a link with minimal capacity and
moving towards links with higher capacities, we observe more and more users joining the

links, and each user increasing its usage on the next link.

The property described in Lemma 2.2 does not hold for general average-delay cost
functions, as the following example shows. Consider two users (Z = {1,2}) sharing two
links (£ = {1,2}). Suppose that their cost functions are average-delay ones, and that, for
led{l,2}, T = fi+ ﬁ, where C} is a parameter of link [ (its capacity). Assume that
Cy = 201, Cy = 100, ! = 9.53 and r? = 290. It can be verified (e.g., by substituting in
the Kuhn-Tucker conditions) that the NEP is f} = 0, fi = 9.53, fZ = 200.0 and f% = 90.0,
which contradicts the property described in Lemma 2.2. This is because the property relies
deeply on the assumption made in Lemma 2.2, and the above counter-example shows why
that property may not hold for general average-delay cost functions: a user with a low
demand seeks links with small delay, whereas one with a high demand seeks links with

small delay derivatives.
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2.4 A Simple Convergence Result

In this subsection we consider briefly the stability of the NEP. A reasonable dynamic model
for users’ behavior in non-equilibrium is suggested, and convergence of the flow configuration
to the NEP is demonstrated. Only the special case of two users and a two link network
is considered. We point out that this convergence result is not readily extendible to more

general cases, however it may shed some light onto the important stability issue.

Consider a system of two users (Z = {1,2}) sharing two links (£ = {1,2}). The system
starts with some (non-equilibrium) flow configuration f(0). From time to time, each user
measures the current load on each link, and (after performing the necessary calculations)
adjusts its own flows to minimize its cost function. We assume that exact minimization is
achieved at each stage, and that all the above sequence of operations (measuring, calculating
and adjusting) are done instantly. We shall refer to the above as the Elementary Stepwise
System (ESS). Essentially, the system can be modeled as a sequence of steps in each of
which a user updates its routing decisions; we use the notation ff(n) to denote user’s 7 flow
on link [ at the completion of step n. A similar dynamic scheme has been considered, e.g.,
in [20].

Let an ESS be initialized with a system configuration denoted by

£(0) = (£1(0), £%(0)) = ((f1(0), £2(0)), (f£(0), J3(0)))

Relabel the users so that user 1 is the first to adjust its flow. The resulting flow configuration
after this first step is denoted by f(1) = (f'(1),f?*(1)), where £2(1) = £2(0) and f'(1) is the
optimal flow for user 1 against £2(0). Since exact optimization is performed at each step,
then the two users alternate in updating their flows. Thus, user 2 next updates its flow to
yield f(2). Proceeding in this manner, user 1 updates its flow at each odd step n and user 2
updates its flow at each even step n, with the resulting system flow denoted by f(n) in each
case. It is our purpose to show that f(n) converges to the NEP. The proof will be based on

the following simple observation:

Lemma 2.3 Let ! and ! be two feasible flows for user 1, and let £% (resp. fQ) be an optimal
feasible flow of user 2 against £ (resp. fl) Forle {1,2},if f! > fll, then ff < ff.

Proof: Assume, to the contrary, that f!' > fll and f? > f? hold for some link [. Denoting
the other link by m, this implies that f. < f;ln, 2 o< f;, fi > frand f, < fn. The
Kuhn-Tucker conditions (2)-(3) for user 2 together with the monotonicity properties of the

marginal costs K} now lead to the following contradiction
Ko (fo f) = N S KRS < KPR ) = A < K2 F) < KOS Fin)

and the conclusion follows. O
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Proposition 2.1 Assume that the FSS is initialized with a feasible system configuration
f(0). Then the system configuration converges over time to the (unique) NEP f, ie.:
lim f(n)=f

Proof: We first establish that each component of f(n) increases or decreases monoton-
ically in n. Let [ be a link for which f!}(1) < f}(3). Noting that by its definition £%(2) is
optimal for user 2 against f1(1) and similarly that £2(4) is optimal against £1(3), it follows
from the above lemma that f?(2) > f?(4). A symmetric argument can now be employed
to establish that f!(3) < f!(5). Proceeding inductively, and recalling that user 1’s flows

remain fixed at each even step, it follows that for each odd n
fln) = flin+1) < fl(n+2),
and similarly for each even n
Ji(n) = f(n+1) 2> fi(n+2).

Since the flows are bounded, this implies that f!(n) and f?(n) converge as n — oco. Since
the sum of flows on both links is constant, this obviously implies similar convergence for
the flows on the second link, so that f(n) converges to some flow vector f = (f!,£?). Due
to the continuity of the cost functions it follows that f! is optimal for user 1 against f? and
f? is optimal for user 2 against f', so that f is the NEP. a

3 General Networks

3.1 Model and Problem Formulation

We consider now a network G(V, £), where V is a finite set of nodes and £ CV x Vis a set
of directed links. For simplicity of notation, we assume that at most one link exists between
each pair of nodes (in each direction). This assumption involves no loss of generality, since
any network can be reduced to this form by introducing fictitious nodes. For a link [ € £,
we denote by S(!) the identity of the node at the starting point of [ and D(/) is the node
at the ending point. We shall at times denote a link [ as (u,v), where u = S(1), v = D().
Considering now a node v € V, we denote by In(v) (correspondingly, Out(v)) the set
of node v’s in-going links (correspondingly, out-going links) i.e.: In(v) = {{|D(l) = v}
(Out(v) = {11S(1) = v}).

As before, we are given a set 7 = {1,2,...,1} of selfish users, which now share the
network G. With each user 7 we associate a unique pair of source node s(7) and destination
node (i), and a throughput demand, which is some ergodic process with average rate of

r*. (In Sections 3.3 and 3.4 we shall specialize to the case where all users have the same

sources and destinations.)
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A user ships its demand (from s(¢) to #(7)) by splitting it through the various paths
connecting the source to the destination. This is the essence of the routing operation
performed by users. A user is able to decide (at any time) how to route its demand, i.e.,
user i decides what fraction of r* should be sent through each path. We note that routing
decisions can be interpreted also at the nodal level i.e., a user decides (perhaps distributedly)
what amount of the flow entering into each node should be sent through each out-going link.
We denote by ff = fi the expected flow of user i € 7 on link [ = (u,v) € L. User i can fix

any value for the ff"s, as long as

F1 Forall l € £, f{ > 0 (nonnegativity constraint).

F2 For all v € V, ZleOut(v) ff = Zlefn(v) ff + 7, where ri(i) =7, ri(i) =—rand r\ =0

for v # s(i),1(i) (conservation constraint).

Turning our attention to a link [ = (u,v) € L, let fi = fu, be the total flow on that
link, i.e., fi = > ie7 ff As before, the flow configuration 1 of user i is the vector of all
f"s (i.e., for all [ € £), and the system flow configuration f is the vector of all user flow
configurations. Feasible user- and system- flow configurations are defined as before (but

considering the above constraints F'1-F2), and denoted correspondingly as Fi and F.

Assumptions G from Section 2 are now assumed to hold for the general network model.
In particular, the cost function J¢ of user i is the sum (over all network links) of link cost
functions i.e., J¢ = dler Ji. The definition of K} is as before.

We face a noncooperative game played by users on a network, and investigate the prop-
erties of the corresponding NEP(s). We note that the existence of an NEP in the network
environment is guaranteed due to the same reasons as in the parallel-links environment.
The Kuhn-Tucker conditions take now the following form: for every ¢ € 7 there exists a set

of (Lagrange multipliers) {\’} such that, for every link (u,v) € L:

ueyr
1> 0= A =K (f.,)+ AL (14)

The investigation of NEPs in network environments proves to be a much harder task
than in the previous environment. In the Appendix we present an example of a four-node
network with two users and type-A functions, for which the NEP is not unique. Nonetheless,
in the following we prove uniqueness of the NEP under further conditions. We note that
the properties of NEPs, derived in the previous section for certain classes of cost functions,
may not hold in the network environment. In particular, in the Appendix we present an
example of a four-node network with two users and type-B functions, in which the properties
indicated in Lemma 2.1 and Corollary 2.1 do not hold. These indeed point at the complexity

of the network environment.
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3.2 Uniqueness of the NEP under Diagonal Strict Convexity

Uniqueness of the NEP for convex games has been established in [19], under certain convexity-
like conditions on the cost functions which were termed diagonal strict convezity (DSC)
conditions. In the present sub-section this result is applied to the network flow game. We
first introduce the DSC conditions for our problem. Since these conditions may be hard
to verify directly, we derive sufficient conditions on the line cost functions which guarantee
DSC, and hence the uniqueness of the NEP. Some examples will be presented to illustrate
the applicability of these results; these examples indicate that the derived conditions are

quite useful for lightly loaded networks, but may fail to hold otherwise.

Following [19], the following notation will be used. Let V,J!(f) denote the gradient of

Ji(f) with respect to fi, i.e. the column vector

: o d.J;
Vil'(f) = i<f>:( i(f)) .
of of; 1 lec

Let p € R! be a fixed positive vector (p; > 0,4 € 7). Define the weighted sum

a(f,p) = pil'(f),

1€
and the associated pseudogradient vector
p1V1JH(f)
g(f,p) = :
prV I (f)

(Note that p; represents a positive scaling of the cost function for user ¢, and that such
scaling does not affect the NEPs.) The function o(-,p): F — R is called diagonally strictly
convex (DSC) if for every f,f € F holds

(f=1)(g(f,p) — g(£,p)) > 0. (16)

Theorem 3.1 (Rosen [19]): If o(f,p) is DSC for some p > 0, then the NEP system flow

configuration is unique.

Note that constraints F on the flows of each user are independent of the others’ flows,
as required in Theorem 2 of [19]. We also note that allowing infinite values for the cost
functions causes no problem, since by our Assumption G5 the costs are finite at each NEP,

and the uniqueness proof of [19] goes through without modification.

We proceed to formulate sufficient conditions for DSC which may be verified for each link
separately. For every link [, let F denote the set of feasible flow vectors fj = (f{,.. .,flI)
on that link for which the link costs J{(f}) are all finite. Note that Fj has the simple form
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Fi={fi:mi < fl <Mj,Jifi) <oo,i€ I}, where m! and M; are, respectively, the
minimal and maximal values that ff may take in any feasible flow configuration of user .

For each 0 < p € R!, define the pseudo-Jacobian for link [ as the following I x I matrix

Gih, p) {p e (f)} heF
s = 7 : -\ 1] ) 1 1-
affofi ijeT

The following terminology shall be used: a square matrix M is said to be positive defi-

nite (denoted M > 0) if the symmetric matrix (M + M’) is positive definite, namely all

eigenvalues of the latter are strictly positive. Here M’ denotes the transpose of M.

Corollary 3.1 Assume that for some positive p € R!, the matriz Gi(f;, p) is positive defi-
nite for every fy € Fy and | € L. Then the NEP is unique.

Proof: As shown in [19, Theorem 6], a sufficient condition for o(f, p) to be DSC over F
is that G(f,p) > 0 for every f € F, where G(f, p) is the (LI) x (L) Jacobian matrix of
g(f, p) with respect to f. It may be easily seen that, up to re-indexing of rows and columns,

G(f, p) equals diag{G\(f},p), ! € L}, and the required conclusion follows. O

Remark: In the conditions of the last corollary, the system flow constraints are manifested
only through their projection on each of the links. While this makes them easier to verify,
it also implies that these conditions are stronger (more demanding) than DSC condition

(16), where the system flow constraints are fully taken into account.

We now present a few examples and observations to illustrate the conditions of Corol-

lary 3.1. For simplicity, only the case of two users is considered, namely Z = {1,2}.

Consider a link [ € £ with type-C cost functions, namely

» o
[(f]) = =1,2 1
Jl(l) Cl_flv t y 4y (7)
where f| = (f}, f?) and fi = f! + f?. Then
1 200(Ci= f)  pu(Cit Il = f})

£ - -
Gi(fi, p) (Cr = f)? pa(Ch + f12 — fll) 2p2(Cy — le)

for f; < €. The following facts may now be easily verified:
(i) Let F = {f : 0 < f/ < 2% 4 = 1,2}, where (2',2%) are constants which satisfy
z' + 2? < Cp. Then, for p = (2?,2'), Gi(f1, p) > 0 over Fy.

(i1) Let Fy = {fi : f{ > 0, f}+f? < Ci}. Then no vector p > 0 exists for which G/(f,p) > 0
over Fj. Indeed, for any fixed p the matrix G;(f], p) will not be positive definite if
(say) f}' is close enough to .
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As a consequence of fact (i) above, the following result is evident. Consider a network
with two users, cost functions (17) on each link, and flow requirements (r!,7?) such that
r! +r2 < () for every [ € £. Then the NEP is unique.

It is evident from fact (¢7) above that a similar result cannot be deduced from Corol-
lary 3.1if r! + 72 > () for some link [. Thus, the usefulness of Corollary 3.1 is limited in
this case to lightly loaded networks.

To further illustrate this point, consider cost functions of the form

Ji(f) = fiPu(f1), i=1,2 (18)

where P, is a monic polynomial of degree m > 1. Let F; be the positive quadrant. It
may then be verified that G;(f;) > 0 over fj € Fy if m < 7, but not if m > 8. Thus, if the
cost functions on each line of a two-user network are of the form (18) with m < 7, then
uniqueness of the NEP is guaranteed without any restrictions on the flow requirements of
the users. Both this and the “lightly loaded network” condition alluded to above can be
interpreted as requiring that the cost functions will not increase “too steeply” as the load

on the line increases.

3.3 Symmetrical Users

Suppose that all users have the same demands (in particular the same source node and
same destination node) and use the same type-A cost functions, i.e.: forall i,j € T r' = 7/,
and forallieZand [ € L Jf(ff, fi)= Jl(ff, f1). We call such users symmetrical. We recall
that even though symmetrical users use the same cost functions, they still have different

objectives. Note that for symmetrical users we also have Ki(-,-) = K/(-,-)foralli,j 1.

Lemma 3.1 In a network with symmetrical users, the flow values at an NEP are such that

ffz?

forallieZ andl € L.

Proof: Assume, by contradiction, that there is a link [ € £ and a user i € 7 such that
f; % It follows that there is another user j € 7 such that f; + fl], and without loss of
generality assume that f; > fl] We construct a directed network G'(V’, L'), whose set of
nodes is identical to that of G (i.e., V' = V) and the set of links £ is constructed as follows:

e for each link [ = (u,v) € £ such that f} > fl] we have a link I’ = (u,v) € L'; to such

a link I’ we assign a (flow) value z; = f} — fl]

o for each link { = (u,v) € £ such that f} < fl] we have a link I’ = (v,u) € L'; to such

a link " we assign a (flow) value zp = fi — f/.
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In other words, we redirect links according to the relation between ff and fl] It is easy
to verify that the values x; constitute a nonnegative, directed flow in the network. Since
symmetrical users have the same demand (i.e., 7' — 7 = 0), this flow has no sources (the
total flow into each node equals the total flow out of that node, i.e. it is a circulation).
Thus, either 2 = 0 or else there is a cycle C' of links in G’ such that x; > 0 for all I’ € L'.
Since for the link i, f; > fl], we have that x; > 0, we conclude that a cycle (' as described

above exists.

Consider now a link I’ = (u,v) € £ for which 2y > 0. Clearly, therefore, either f¢, > fi,
or else f7, > fi . In the case where fi > fI > 0 we have that

A:LU, - A:} = I(ZLU( ’Li,v?fuv) = (’Z,U( ’Liv?fuv) > I('Z,U(f’iu7fuv) Z AZL - A‘ZJ (19)

where the first transition follows from the Kuhn-Tucker conditions for f', > 0, the second
is because all users have the same cost functions, the third is due to the assumption f!, >
fi,, and the fourth is again due to the Kuhn-Tucker conditions. In the second case (i.e.,

7. > fi, > 0) we have by symmetry that

A= A > =N (20)

U

Note that the results of equations 19 and 20 are in fact identical.

Denote A\, = A — A/ (for all w € V). From (19) and (20) we conclude that, for
I" = (u,v), zp > 0 implies that AX, > AX,. This means that along the cycle C' described

above we would have a monotonically increasing sequence of AX’s, which is a contradiction.

We conclude that, for all ¢,7 € 7 and all [ € L, we have ff = fl] This means that
Ji=% -

Theorem 3.2 A network with symmetrical users has a unique NEP.

Proof: Suppose by contradiction that there are two NEPs, and denote by ff, fi the flow
values of one NEP and by fll, fl those of the other NEP. Also, A,, A are, respectively, the
Lagrange multipliers at a node u € V in the two NEPs. Since the two NEPs are different,
there are some i € 7 and [ € £ such that fl2 + fll, and without loss of generality assume

thatfl—i > f}l We construct a directed network G’ in the same way as in the proof of Lemma

3.1, only that now we consider the relation between ff and fll. In other words, the set of

links £’ is constructed as follows:

o for each link [ = (u,v) € £ such that f/ > fli'we have a link I = (u,v) € L'; to such

a link I we assign a (flow) value 2y = fi — f;.

o for each link { = (u,v) € £ such that f} < fli we have a link I’ = (v,u) € L; to such

a link I’ we assign a (flow) value z; = f; — fi
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Again, it is easy to verify that the values xp constitute a nonnegative, directed flow in the
network. Since user ¢ has the same demand r at both NEPs, this flow has no sources. This,
together with fl2 > flj, mean that there is a cycle C of links in G’ such that x; > 0 for all
lelr.

From the proof of Lemma 3.1 we have that, forall j € T and [ € L, fl] = % and fl] = %
Thus, fl] > flj implies f; > fi.

Consider now any link I’ = (u,v) € £’ for which 2 > 0. We have that either fi, > fi
orelse fi > fi . In the first case (i.e., fi > fi > 0) we have that

A; - A:} = ](12;11( évvfuv) > ](12;11( Aliv?fuv) > X; - X:J
where the first transition is due to the Kuhn-Tucker conditions (for the first NEP and for
t» > 0), the second is due to the the assumption ff > f; (which implies f; > fl), and the

third is again due to the Kuhn-Tucker conditions (for the second NEP). In the second case
(i.e., ffm > fi. > 0) we have by symmetry that

AL N> N\

Denote A\, = X, — A%, (for all w € V). The contradiction follows as in the proof of Lemma
3.1. a

Corollary 3.2 If all users have the same demand (ri = rj) and the cost functions are of
type B, then there is a unique NEP. The flow values at the NEP are such that ff = 4 for
allt e andl € L.

Proof: Follows directly from the last lemma and theorem, since cost functions of type B

are identical for all users. O

3.4 Uniqueness of NEPs with All-Positive Flows

In this sub-section we prove a result, which implies, in particular, that at most one NEP
exists with the property that all users have strictly positive flows on each link of the network.
Note that this all-positive assumption makes sense only when all users have the same source
and destination nodes, which will be assumed in this sub-section. A similar result has been

established in [16], for the special case of the two-node parallel lines network.

Theorem 3.3 Assume type-B cost functions. Let f and'f be two NFEPs such that: there
exvists a set of links Ly C L such that {fi > 0 and f' >0, i€ I} forl € Ly, and
{fi=fi =0, i€} forl & Ly. Thenf =1.

The theorem defines certain classes of flow configurations, each characterized by a set of

links such that every user ships flow only through each of these links. The theorem states

www.manaraa.com



19

that within each class at most one NEP may exist. Obviously, to deduce global uniqueness
of the NEP, one needs to verify independently that an NEP may exist within exactly one
of these classes. This latter fact is not true in general, e.g., see the end of subsection 2.3 for
an example in which the unique NEP is not within any such class (one user uses a link not
used by the other).

Proof: We start by re-writing the Kuhn-Tucker conditions (14)-(15) for f and f over the
set of links £;. Note that, since all flows are strictly positive on these links, then the
equality condition (14) holds. Recall also that for type-B cost functions, i.e. J¢ = fi Ty(f;),
we have K} = f{ T/ + T;. Thus, there exist constants {\}} and {\%} such that, for every
link I = (u,v) € Ly and ¢ € 7,

Aiileiv(fuv) + Tuv(fuv) = AZ - X; )
’liUT’LiU(fUU) + Tuv(fuv) = /\; - /\; .

Summing each of these equations over 7, we get

uv(fl)
uv(fl)

fuvTév(fuv) +1- Tuv(fuv) = Au - Au (21)
fuvTév(fuv) +17- Tuv(fuv) = Au - Ay, (22)

e e

S

S
where X, 2 ST and A, 2 S°; AL, From the last two equations, combined with the
conservation constraints F2, it will now be deduced that fl = fifor every [ € L. (Note that
these equations are very similar to the Kuhn-Tucker conditions for a single-user optimization
problem of link flows, with respect to a modified (convex) link cost function with derivatives
Si(fi). Thus, the uniqueness of their solution is actually a consequence of standard convex
programming results. However, a direct proof is provided below.) Subtracting (22) from
(21), multiplying by (fl — f1), summing over (u,v) € £y and noting that f; = fi = 0 for
l ¢ Ly, we get

Z (fuv - fuv)(suv(fuv) - Suv(fuv)) = Z (fuv - fuv) [(Xu - /\u) - (/\v - /\v)] . (23)

(u,v)EL (u,v)EL

By the properties of type-B cost functions, it follows that each function Sy, () is strictly
increasing. This implies that (each term in the sum on) the left-hand side of (23) is non-
negative, and equals zero only if fl = f; for every [. However, the right-hand side of
this equation sums up to 0. Indeed, changing summation variables and applying the flow

conservation constraints to f and f separately yields

Z (fuv - fuv)(;\u - /\u) - Z (fwu - fwu)(Xu - /\u)

(u,v)EL (w,u)eL
= Y w2 Y == X =)
u€V 1e0ut(u) leIn(u)
= 0.
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It has thus been established that fl = f; for every | € L. Proceeding exactly as in the proof
of Theorem 2.1 (starting from equation (11)) it may now be inferred that f; = fi for every
v and l,i.e.f:f. a

4 Conclusion

This paper considered the fundamental problem of routing in an environment composed of
several selfish users. The problem was posed as a non-cooperative game, for which the Nash

equilibrium was investigated.

The main thrust of the analysis was to establish the uniqueness of the NEP under
conditions that comply with reasonable network environment, and in particular encompass
performance criteria commonly employed for routing. The investigation of NEPs in network
routing problems seems to be complicated by the fact that each user is faced with a multi-
variable decision. As was shown, standard theory on convex games fails to yield satisfactory

results even for simple networks.

Problem-specific analysis yielded a complete uniqueness result for the parallel links case.
Moreover, we presented monotonicity properties of the Nash flows that characterize the NEP
in an intuitively appealing way. General network topologies prove to be considerably harder
to tackle. This is indicated by the fact that the type-A assumptions are not sufficient in
order to guarantee uniqueness of the NEP and that ”intuitive” properties that hold in the
parallel-links case fail to hold in general. Nonetheless, we presented several uniqueness

results for various network conditions.

This paper presented initial steps towards the understanding of multi-user routing
games. Several questions for further research stem from the present work. At this point
it is not clear if and how the strong uniqueness result, obtained for parallel links, can be
extended to a general network. The counter-example presented in this paper shows that
such an extension is not possible for type-A functions, however more restricted classes (e.g.
type-B functions) might guarantee the uniqueness of the NEP. Another major issue is the
stability of the NEP. A preliminary result in this vein was presented. The uniqueness results

obtained in this paper encourage further investigation on the stability issue.

Several other open questions of practical value deserve attention. For example, in many
networks users are restricted to route their flow along a single path (with strict rules of
changing them). Under such circumstances an NEP may not exist at all and complicated
oscillatory behavior is likely to arise. Another example is that of the delay encountered by
measuring and adjusting network flows which will affect the convergence rate and might

affect convergence altogether.
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10, 12

Figure 1: First NEP
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Appendix

Nonunique NEP Example for General Topologies

Consider the network of Figures 1 and 2, having four nodes and two users with demands

r! = r? = 40 between source node 1 and destination node 4. Figures 1 and 2 describe the

flow values at two different NEP’s; each pair of numbers adjacent to a link are the flow
values of the two users on that link at the corresponding NEP (the left value corresponds

to user 1 and the right value to user 2). Let the values of the K} functions be as follows:
For the first user and the first NEP:
K15(22,40) = 102; K{5(10,22) = 109; K{,(8,18) = 201;
K1,(14,16) = 7; K1,(8,24) = 99;
K1,(24,38) = 92.
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Figure 2: Second NEP

For the first user and the second NEP:

K{,(20,43) = 100; K{5(18,23) = 110; K{,(2,14) = 200;
K3,(4,17) = 10; K3,(16,26) = 100;

K1,(22,40) = 90.

For the second user and the first NEP:

K3,(18,40) = 20; K74(12,22) = 30; K{,(10,18) = 120;
K2,(2,16) = 10; K2,(16,24) = 100;

K2,(14,38) = 90.

For the second user and the second NEP:

K3,(23,43) = 30; K2,(5,23) = 50; K2,(12,14) = 150;
K2,(13,17) = 20; K2,(10,26) = 120;

K2,(18,40) = 100.

The above values comply with the Kuhn-Tucker conditions 14-15, as well as with the

monotonicity property of the K; functions.

We now present a scheme for constructing proper K; functions to which the above values
correspond. We denote by ];127 f; the flow values of the first NEP and by fll, fl those of the
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second NEP. For each user ¢ and link [ we have two values of the function K;, namely
K;(f/, fi) and K;(f/', ). Consider some ¢ and [, and suppose that K;(fll, > K;(f/, ).
Suppose first that f;° > f;'. We define Kias Ki(ff f) = ab - (fi)™ + b (f)'/™. For a large
enough n we have (fi))/" ~ (f))"/" ~ 1 thus

and . .
T € i il

b~ (- KiGE ) - 2 BHE ij)
(fr)ym =)

, thus b? > 0.

For a large enough n we have (f%)” > B;—(fllil)
fi K} (fi . f1)
Suppose now that f/ < fll. Then we must have f; > fl. We repeat the above only that
now we choose
Ki(fs o) = ap - DY + 0 ()"
and we get a symmetrical solution for a! and b}. In each of the two cases we have a
function K; that is continuous and strictly increasing in each of its two arguments. The

corresponding cost function is

i pi _ af iyt b? . 14+1/n
Jl(flvfl)—n_l_l (fi) +1—|—1/n (f1)
for the first case and
T ) = =2 gyt Ay
n4+1 1+ 1/n

for the second case. In either case, we have a proper type-A cost function.
Nonmonotonous NEP Example for General Topologies

Consider the network of Figure 3, having four nodes and two users with type-B cost
functions and with demands 7! = 7, 72 = 4 between source node 1 and destination node 4.
Each pair of numbers adjacent to a link are the flow values of the two users on that link at
the NEP (the left value corresponds to user 1 and the right value to user 2). Let the values
of the 77 and T}’ functions be as follows:
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Figure 3: Nonmonotonous NEP

The above values comply with the Kuhn-Tucker conditions 14-15, as well as with the
monotonicity property of the 7; and 7} functions. Note that f! < f2 although r' > r%.

It can be verified that, for every link, there are positive values €} and d; such that
Ti(fi) = ﬁ + d; satisfies the above NEP values of T; and T;'. Clearly, such functions

comply with the requirements of type-B cost functions.
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